How can one prove, that
$\lim_{p\to\infty} $ $\left\lVert x \right\rVert_P = \left\lVert x \right\rVert_\infty$ applies to all $x \in \mathbb{R^n}$ ?
I know that two norms$\left\lVert \cdot \right\rVert_a$ and $\left\lVert \cdot \right\rVert_b$ in $\mathbb{R^n}$ are equivalent, if there are constants $c_1,c_2 > 0 $ so that for all $x \in \mathbb{R^n}$ there is an inequation chain
$c_1 \left\lVert x \right\rVert_a \leq \left\lVert x \right\rVert_b \leq c_2 \left\lVert x \right\rVert_a$
I think I have to use the inequation above somehow to prove the former, yet I don't know how