Let $E=\exp(iX)$ then your example concerns the function
$$\eqalign{
\def\LR#1{\left(#1\right)}
\def\c#1{\color{red}{#1}}
\def\CLR#1{\c{\LR{#1}}}
\def\op#1{\operatorname{#1}}
\def\trace#1{\op{Tr}\LR{#1}}
\phi(X)
&= \|A-EB\|_F^2 \cr
&= \LR{A-EB}^*:\CLR{A-EB} \cr
&= M^*:\c{M} \cr
}$$ where a colon denotes the trace/Frobenius product, i.e.
$\,\,\,A:B=\trace{A^TB}$
Calculate the Wirtinger differential of this function
$$\eqalign{
d\phi \;=\; M^*:dM + M:dM^* \;=\; 2\,{\mathcal Re}(M^*:dM)\cr
}$$
Continuing
$$\eqalign{
M^*:dM &= -M^*:dE\,B \cr
&= \c{-M^*B^T}:d\exp(iX) \cr
&= \c{C}:d\exp(iX) \cr
&= C:d\LR{\sum_{k=0}^\infty q_kX^k} \\
&= C:\sum_{k=1}^\infty q_k\sum_{j=1}^kX^{j-1}\,dX\,X^{k-j} \cr
&= \CLR{\sum_{k=1}^\infty q_k\sum_{j=1}^k\:X^{k-j}C^TX^{j-1}}^{\c T}:dX \cr
&= \c{G}:dX \cr
}$$
where, in addition to the Taylor series for the exponential $\LR{{\rm with\,\,} q_k=\frac{i^k}{k!}},\;$ I have introduced the matrices $(C,G)$ to hide some messy expressions.
Now we are in a position to write (recalling that $X$ is real)
$$\eqalign{
d\phi &= (G+G^*):dX \cr
\frac{\partial\phi}{\partial X}
&= (G+G^*) \;=\; 2\,{\mathcal Re}(G) \cr
}$$
Update
After writing the above, I noticed that your matrices are rectangular, which means you are applying the exponential function element-wise.
This makes the Taylor series unnecessary
(and the result much simpler) because
$$dE = iE\odot dX \qquad\quad $$
Picking up midway through the previous derivation,
$$\eqalign{
M^*:dM &= C:dE \\
&= C:(iE\odot dX) \\&= \CLR{iE\odot C}:dX \\&= \c{H}:dX \\
\frac{\partial\phi}{\partial X}
&= (H+H^*) \;=\; 2\,{\mathcal Re}(H) \\
}$$
where $\odot$ denotes the elementwise/Hadamard product.