I used the fundamental theorem of finite abelian groups.
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{25}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
$\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{25}$
$\mathbb{Z}_{8} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
$\mathbb{Z}_{8} \times \mathbb{Z}_{25}$
My question is:
Isn't $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$ isomorphic to the group of order $200$ by the theorem? Should such a product be included in the list?