Suppose $X_1, \dots, X_n \overset{\text{iid}}{\sim}\text{Poisson}(\lambda)$.
Then
$$L(\lambda) = \prod_{i=1}^{n}\dfrac{e^{-\lambda}\lambda^{x_i}}{x_i!} = \dfrac{e^{-n\lambda}\lambda^{\sum_{i=1}^{n}x_i}}{\prod_{i=1}^{n}x_i!} = \exp\left[\sum_{i=1}^{n}x_i \cdot \log(\lambda)-n\lambda \right]\cdot \dfrac{1}{\prod_{i=1}^{n}x_i!}\text{.}$$
Since the parameter space for $\lambda$, given by $\Theta = (0, \infty)$, contains an open set (we may choose $(0, 1)$ for example), and the Poisson distribution is of the exponential family, it follows that the statistic $T(\mathbf{X})=\sum_{i=1}^{n}X_i$ is sufficient and complete for $\theta$. (See https://stats.stackexchange.com/questions/322381/what-is-exponential-family-criterion-to-test-the-sufficiency-and-completeness-of, for example.)
Now
$$\mathbb{E}[T(\mathbf{X})]=n\lambda$$
so that $$g_1(T(\mathbf{X})) = \dfrac{1}{n}T(\mathbf{X})$$
is an unbiased estimator of $\lambda$. Furthermore,
$$\mathbb{E}[(T(\mathbf{X})^2]=\text{Var}(T(\mathbf{X}))+(\mathbb{E}[T(\mathbf{X})])^2 = n\lambda+n^2\lambda^2\text{.}$$
It follows that
$$\mathbb{E}\left[(T(\mathbf{X}))^2-T(\mathbf{X}) \right] = n^2\lambda^2$$
hence
$$g_2(T(\mathbf{X}))=\dfrac{1}{n^2}\left\{[T(\mathbf{X})]^2-T(\mathbf{X}) \right\}$$
is an unbiased estimator of $\lambda^2$.
Hence,
$$g(T(\mathbf{X})) = g_1(T(\mathbf{X})) + g_2(T(\mathbf{X}))=\dfrac{1}{n}T(\mathbf{X})+\dfrac{1}{n^2}\left\{[T(\mathbf{X})]^2-T(\mathbf{X}) \right\}$$
is an unbiased estimator of $\lambda + \lambda^2 = \mathbb{E}[X^2]$.
By the Lehmann–Scheffé theorem, it follows that $g(T(\mathbf{X}))$ is the UMVUE of $\lambda+\lambda^2$.