In an answer to an earlier question, it is shown that $$D(2^p - 1)D(2^{p-1}) = 2s(2^p - 1)s(2^{p-1}) = 2^p - 2,$$ if $2^{p-1}(2^p - 1)$ is an even perfect number, $D(x) = 2x - \sigma(x)$ is the deficiency of $x$, $s(x) = \sigma(x) - x$ is the sum of the aliquot divisors of $x$, and $\sigma(x)$ is the sum of divisors of $x \in \mathbb{N}$, the set of positive integers. (Lastly, denote the abundancy index of $x$ by $I(x) = \sigma(x)/x$.)
Here is my question in this post:
What is the common (and simplified) value for $D(q^k)D(n^2) = 2s(q^k)s(n^2)$ when $q^k n^2$ is an odd perfect number?
MOTIVATION
Since $\gcd(q^k, \sigma(q^k)) = 1$, we have $$\frac{\sigma(n^2)}{q^k} = \frac{2n^2}{\sigma(q^k)} = \gcd(n^2, \sigma(n^2))$$ $$\frac{D(n^2)}{s(q^k)} = \frac{2s(n^2)}{D(q^k)} = \gcd(n^2, \sigma(n^2))$$ $$D(q^k)D(n^2) = 2s(q^k)s(n^2) = D(q^k)s(q^k)\gcd(n^2, \sigma(n^2)).$$ Then, we have from this earlier question the following expression for $\gcd(n^2, \sigma(n^2)$ in terms of $q$, $k$, $n^2$, and $\sigma(n^2)$: $$\gcd(n^2,\sigma(n^2)) = \frac{I(q^k)}{s(q^k)}\sigma(n^2) - \frac{1}{I(q^k)s(q^k)}(2n^2).$$
Plugging in this value for $\gcd(n^2, \sigma(n^2))$ into our equation for $$D(q^k)D(n^2) = 2s(q^k)s(n^2) = D(q^k)s(q^k)\gcd(n^2, \sigma(n^2)),$$ we obtain $$D(q^k)D(n^2) = 2s(q^k)s(n^2) = D(q^k)s(q^k)\Bigg(\frac{I(q^k)}{s(q^k)}\sigma(n^2) - \frac{1}{I(q^k)s(q^k)}(2n^2)\Bigg) = D(q^k)\Bigg(I(q^k)\sigma(n^2) - \frac{1}{I(q^k)}(2n^2)\Bigg).$$
Note that "if" $I(q^k) = -1$ then the equation would be trivial and the common value would just be $D(q^k)D(n^2)$. But, of course, we know that $$1 < I(q^k) < \frac{5}{4}.$$
Alas, this is where I get stuck.