Given $f: \mathbb{R} \to \mathbb{R}$ convex, show that: $$ \frac{2}{3}\left(f\left(\frac{x+y}{2}\right) + f\left(\frac{z+y}{2}\right) + f\left(\frac{x+z}{2}\right)\right) \leq f\left(\frac{x+y+z}{3}\right) + \frac{f(x) + f(y) + f(z)}{3}.$$
I have tried some ideas, such as transforming it into $$ f\left(\frac{x+y}{2}\right) + f\left(\frac{z+y}{2}\right) + f\left(\frac{x+z}{2}\right) - 3f\left(\frac{x+y+z}{3}\right)\\ \leq f(x) + f(y) + f(z) - f\left(\frac{x+y}{2}\right) - f\left(\frac{z+y}{2}\right) - f\left(\frac{x+z}{2}\right) $$ (which graphically seemed intuitive) and using that such an $f$ lies above its tangents, but did not succeed… Ideas are welcome :)