34

How to evaluate the series: $$ 2 \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n+1}\left( 1 + \frac12 + \cdots + \frac 1n\right) $$

According to Mathematica, this converges to $ (\log 2)^2 $.

S L
  • 11,961
  • 3
    What is the summand when $n=0$? Is it just $-1$? Or perhaps the summation runs from $n=1$ to $n = \infty$ instead? – Antonio Vargas Feb 02 '13 at 18:47
  • For large $n$ the absolute value of adjacent terms is $ n\log{(n+1)}/((n+1) \log{n}) \sim (n \log{n}+1)/(n \log{n} +n)$ which does go to zero. – Ron Gordon Feb 02 '13 at 18:48
  • For $|a_{n+1}|\leq |a_n|$, write the inequality down, multiply by $n+2$, then use $\frac{n+2}{n+1}=1+\frac{1}{n+1}$. It works. – Julien Feb 02 '13 at 18:50
  • For some reason, I could not fix my error. The last term in the denominator should be $\log{n}$, not $n$. The conclusion is the same. – Ron Gordon Feb 02 '13 at 18:52
  • @rlgordonma I ran 2 Sum[2 (-1)^(n + 1)/(n + 1) Sum[1/k, {k, 1, n}], {n, 0, Infinity}] on mathematica – S L Feb 02 '13 at 18:53
  • @julien no luck!! could you give a little more hint?? – S L Feb 02 '13 at 18:58
  • $\frac{n+2}{n+1}(1+\ldots+1/n)=(1+1/(n+1))(1+\ldots+1/n)=1+\ldots+1/n+ (1/(n+1))(1+\ldots+1/n)\geq 1+\ldots+1/n+1/(n+1)$. – Julien Feb 02 '13 at 19:02
  • @julien thank you very much!! – S L Feb 02 '13 at 19:06
  • You're welcome! By the way, what is your answer to Antonio's comment above? There really is a problem of definition when $n=0$. – Julien Feb 02 '13 at 19:11
  • I don't think so, since it is the sum of Cauchy product of $\sum_{n=0}^\infty \frac{(-1)^{n+1}}{n+1}$. Still, I think we could shift it up and evaluate it from 1. – S L Feb 02 '13 at 19:14
  • @julien the result is same when evaluating from $n=1$. The first case will be ignored since there is nothing at the harmonic part. – S L Feb 02 '13 at 19:23
  • 1
    @experimentX you answered your own question... your sum is exactly equal to the product $$\left(\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n+1}\right)^2 = (-\log 2)^2 = (\log 2)^2.$$ – Antonio Vargas Feb 02 '13 at 19:37
  • @AntonioVargas huh!! could you elaborate it please?? I am not getting the picture. – S L Feb 02 '13 at 19:39
  • Okay, I'll type it up. – Antonio Vargas Feb 02 '13 at 19:39
  • 1
    Hint: If $f(x)=(\log x)^2$, then $f^{(n+1)}(1)=2,(-1)^{n+1}(n!)(1+\frac{1}{2}+\cdots+\frac{1}{n})$. See related question – Michael E2 Feb 02 '13 at 19:56

6 Answers6

37

Recall that, formally,

$$ \left(\sum_{n=1}^{\infty} a_n\right)\left(\sum_{n=1}^{\infty} b_n\right) = \sum_{n=1}^{\infty} c_{n+1},$$

where

$$ c_n = \sum_{k=1}^{n-1} a_k b_{n-k}. $$

If the series $\sum c_{n+1}$ converges, then the above equality is actually true. You seem to know how to show this, so I'll just demonstrate the formal aspect of the problem.

Let $a_n = b_n = \frac{(-1)^{n}}{n}$. Then

$$ a_k b_{n-k} = \frac{(-1)^n}{k(n-k)} = \frac{(-1)^n}{n}\left(\frac{1}{k}+\frac{1}{n-k}\right), $$

so that

$$ \begin{align*} c_n &= \frac{(-1)^n}{n} \sum_{k=1}^{n-1} \left(\frac{1}{k}+\frac{1}{n-k}\right) \\ &= 2\frac{(-1)^n}{n} \sum_{k=1}^{n-1} \frac{1}{k}. \end{align*} $$

We therefore have

$$ 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1} \sum_{k=1}^{n} \frac{1}{k} = \left(\sum_{n=1}^{\infty} \frac{(-1)^n}{n}\right)^2 = (-\log 2)^2 = (\log 2)^2. $$

20

Use generating functions:

Consider $$-\log(1-x) = \sum_{n=1}^\infty \frac{x^n}{n}.$$ Dividing by $1-x$, we get $$-\frac{\log(1-x)}{1-x} = \sum_{n=1}^\infty \left(\sum_{k=1}^n \frac{1}{k}\right)x^n.$$ Integrating this and multiplying everything by $2$ gives $$\left[\log(1-x)\right]^2 = 2\sum_{n=1}^\infty \left(\sum_{k=1}^n \frac{1}{k}\right)\frac{x^{n+1}}{n+1} + C,$$ where $C$ is some constant. But we can get rid of $C$ by plugging $x=0$ into both sides, which gives $C=0$: $$\left[\log(1-x)\right]^2 = 2\sum_{n=1}^\infty \left(\sum_{k=1}^n \frac{1}{k}\right)\frac{x^{n+1}}{n+1}.$$ From here, we'd like to simply plug in $x=-1$ and say our answer is $(\log{2})^2$, but we have to first check to make sure the power series on the right actually converges there. To do this, set $H_n=1+\frac{1}{2}+\cdots + \frac{1}{n}$ (the "$H$" is for "harmonic", since $H_n$ is the $n$th harmonic number). Let's see when the inequality $$ \frac{(n+1)H_{n+1}}{(n+2)H_n}<1$$ holds. Rearranging terms, and using the fact that $H_{n+1}=H_n+\frac{1}{n+1}$, it follows that the above inequality holds exactly when $H_n>1$. But a quick glance at the definition of $H_n$ shows that this is always true! Therefore, the terms of our series decrease in absolute value. Since they also converge to zero (they're all less than $1/(n+1)$, which converges to zero), the entire series converges by the alternating series test.

Avi Steiner
  • 4,309
16

This is a special case of a more general result derived here.

$$S = \sum_{n=1}^{\infty} \dfrac{(-1)^{n+1}}{n+1} \sum_{k=1}^n \dfrac1k$$ Recall that $\dfrac1k = \displaystyle \int_0^1 x^{k-1} dx$ and $\dfrac1{n+1} = \displaystyle \int_0^1 y^n dy$.

Now use the following fact. $$\sum_{k=0}^{\infty} \int_0^1 (-z)^k dz = \lim_{n \to \infty} \int_0^1 \dfrac{1 - (-z)^n}{1+z} dz$$ The sequence of functions $f_n(z) = \dfrac{1 - (-z)^n}{1+z}$ is dominated by the function $g(z) = \dfrac2{1+z}$ in the interval $[0,1]$, which is integrable. Hence, we can swap the limit and the integral to get that $$\lim_{n \to \infty} \int_0^1 \dfrac{1 - (-z)^n}{1+z} dz = \int_0^1 \dfrac{dz}{1+z}$$

Hence, $$S = \sum_{n=1}^{\infty} (-1)^{n+1} \int_0^1 y^n dy \left(\sum_{k=1}^n \int_0^1 x^{k-1} dx \right) = \sum_{n=1}^{\infty} (-1)^{n+1} \int_0^1 y^n dy \left(\int_0^1 \dfrac{1-x^n}{1-x} dx \right)$$ Hence, $$S = \int_0^1 \int_0^1 \dfrac{\dfrac{y}{1+y} - \dfrac{xy}{1+xy}}{1-x} dy dx = \int_0^1 \int_0^1 \dfrac{y+xy^2-xy-xy^2}{(1+y)(1+xy)(1-x)} dx dy\\ =\int_0^1 \int_0^1 \dfrac{y}{(1+y)(1+xy)} dx dy = \int_0^1 \dfrac{\log(1+y)}{1+y} dy = \left. \dfrac{\log^2(1+y)}2 \right \vert_0^1 = \dfrac{\log^2(2)}2$$ The sum you are interested in is $2S$ and hence the answer is $\log^2(2)$.

5

In this answer, it is shown that $$ \sum_{n=1}^\infty\frac{(-1)^{n-1}}{n}H_n=\frac12\zeta(2)-\frac12\log(2)^2 $$ This sum is $$ \begin{align} 2\sum_{n=1}^\infty\frac{(-1)^n}{n}H_{n-1} &=2\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n}\left(\frac1n-H_n\right)\\ &=2\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n^2}-2\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n}H_n\\ &=\zeta(2)-\left(\zeta(2)-\log(2)^2\right)\\[6pt] &=\log(2)^2 \end{align} $$

robjohn
  • 353,833
3

Here is another approach that I just noticed $$ \begin{align} 2\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n+1}\sum_{k=1}^n\frac1k &=2\sum_{k=1}^\infty\sum_{n=k}^\infty\frac{(-1)^{n+1}}{k(n+1)}\tag{1}\\ &=2\sum_{k=1}^\infty\sum_{n=1}^\infty\frac{(-1)^{n+k}}{k(n+k)}\tag{2}\\ &=2\sum_{k=1}^\infty\sum_{n=1}^\infty(-1)^{n+k}\frac1n\left(\frac1k-\frac1{n+k}\right)\tag{3}\\ &=\sum_{k=1}^\infty\sum_{n=1}^\infty(-1)^{n+k}\frac1n\frac1k\tag{4}\\[6pt] &=\log(2)^2\tag{5} \end{align} $$ Explanation:
$(1)$: change the order of summation
$(2)$: substitute $n\mapsto n+k-1$
$(3)$: partial fractions
$(4)$: swap $n$ and $k$ in $(2)$ add to $(3)$ and divide by $2$
$(5)$: $\sum\limits_{n=1}^\infty\frac{(-1)^{n-1}}{n}=\log(2)$

robjohn
  • 353,833
2

$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &2\sum_{n = 1}^{\infty}{\pars{-1}^{n + 1} \over n + 1} \pars{1 + {1 \over 2} + \cdots + {1 \over n}} = -2\sum_{n = 1}^{\infty}\pars{-1}^{n}\, H_{n}\int_{0}^{1}x^{n}\,\dd x = -2\int_{0}^{1}\sum_{n = 1}^{\infty}H_{n}\pars{-x}^{n}\,\dd x \\[5mm] = &\ -2\int_{0}^{1}\braces{-\,{\ln\pars{1 - \bracks{-x}} \over 1 - \pars{-x}}}\,\dd x = 2\int_{0}^{1}{\ln\pars{1 +x} \over 1 + x}\,\dd x = \left.\ln^{2}\pars{1 + x}\,\right\vert_{\ x\ =\ 0}^{\ x\ =\ 1} = \bbx{\ds{\ln^{2}\pars{2}}} \end{align}

Felix Marin
  • 94,079