2

Kind of weird question, but is there something like an integral operator which returns $1$ if $\gcd(a, b) = 1$ and $0$ otherwise, meaning $$ \int_{D} K(a, b, t) \, {\rm d}t = \begin{cases} 1 \qquad \gcd(a, b) = 1 \\ 0 \qquad {\rm else} \end{cases} \, . $$ where $D$ is some appropriate integration domain and $K$ the kernel. Hope it's clear.

Diger
  • 6,852

1 Answers1

2

Sounds like you've forgotten about the Kronecker delta. I love Lethe, mwahahahahha! Then $$\delta_1^{\gcd(a, b)} = 1$$ if $a$ and $b$ are coprime, and $$\delta_1^{\gcd(a, b)} = 0$$ otherwise.

The Short One
  • 926
  • 1
  • 8
  • 27