Let $S_n=\prod_{j=1}^n\frac {2j-1}{2j}.$ We have $$\frac {1}{S_n}=\prod_{j=1}^n(1+\frac {1}{2j-1})\geq \sum_{j=1}^n\frac {1}{2j-1}.$$ E.g. if $a,b,c$ are non-negative then $(1+a)(1+b)=1+a+b+ab\geq 1+a+b,$ and $(1+a)(1+b)(1+c)\geq$ $ (1+a+b)(1+c)=1+a+b+c+(a+b)c\geq 1+a+b+c.$
So $\frac {1}{S_n}\to \infty.$ So $S_n\to 0.$
Remarks: Two useful elementary tools:
(1). If each $a_n\geq 0$ then $\sum_{n\in \Bbb N}a_n$ converges iff $\prod_{n\in \Bbb N}(1+a_n)$ converges.
(2). If $0\leq a_n<1$ for each $n$ then $\sum_{n\in \Bbb N}a_n$ converges iff $\prod_{n\in \Bbb N}(1-a_n)\ne 0.$
In this Q, we may apply (2) with $a_n=1/2n$ to get $S_n\to 0$ directly, or, as I did above, apply (1) to the lower bound $\sum_{j=1}^n(1+1/(2n-1))$ for $1/S_n$ to get $1/S_n\to \infty.$