In cartesian coordinates, we can derive the vector $\vec v_3$ by vector subtraction $\vec v_2-\vec v_1$. We then get the distance between $P$ och $Q$ by taking the absolute value of $\vec v_3$ which then is: $$\lvert \vec v_3\rvert = \lvert \vec v_2-\vec v_1 \rvert= \lvert (x_2,y_2,z_2)-(x_1,y_1,z_1) \rvert = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$$
But how can we do this completely in cylindrical coordinates without converting to cartesian coordinates? We only have, and can only use, $\rho_1$ and $\theta_1$ for $\vec v_1$ as well as $\rho_2$ and $\theta_2$ for $\vec v_2$ in cylindrical coordinates $(\rho,\theta,z)$, where $z=0$ in this example.
