Let $X=(X,|\cdot|$) be a Banach space and let $A,B \subset X$. Then $$ \overline{A+B} \subset \overline{A}+\overline{B}\:?$$ Where, $\overline{A+B}$, $\overline{A}$ and $\overline{B}$ denotes the closure of the sets $A+B$, $A$ and $B$, respectively.
I do not know if this is true. But I tried to prove it as follows:
Let $x \in \overline{A+B}$ then exist $(x_n)_{n \in\mathbb{N}} \subset A+B$ such that $x_n \longrightarrow x$. In addition also, exists $(a_n)_{n \in\mathbb{N}} \subset A$ and $(b_n)_{n \in\mathbb{N}} \subset B$. So, $$a_n+b_n=x_n \longrightarrow x.$$ Hence, exists $y \in A$ and $z \in B$ such that $$ a_n \longrightarrow y \:\: \text{and} \:\: b_n \longrightarrow z.$$ Therefore, $y+z=x$ and $y+z \in \overline{A}+\overline{B}.$ Therefore, $ \overline{A+B} \subset \overline{A}+\overline{B}$.
I was in doubt if I can guarantee the existence of the elements $ y $ and $ z $, in $ A $ and $ B $, respectively.
Is that correct?