For $n\in \Bbb N$ let $\log x_n=\pi(2n+\frac {1}{2}).$ Let $y_n$ be the least integer greater than or equal to $x_n.$
For brevity let $d_n=\log y_n-\log x_n.$
For $0\leq j\leq y_n-1$ we have $$\pi (2n+\frac {1}{2})=\log x_n\leq \log y_n\leq$$ $$\leq \log (j+y_n)<\log y_n+\log 2=$$ $$=d_n+\log x_n+\log 2=$$ $$=\pi (2n+\frac {1}{2})+d_n+\log 2.$$
We also have $$0\leq d_n=\log (1+\frac {y_n-x_n}{x_n})<$$ $$<\log (1+\frac {1}{x_n})<\frac {1}{x_n}\leq \frac {1}{x_1}=e^{-5\pi/2}.$$
So for $0\leq j<y_n-1$ we have $$\sin \log (j+y_n)=\cos (-E_{n,j})$$ where $0\leq E_{n,j}<d_n+\log 2 \leq e^{-5\pi/2}+\log 2<\pi /4. $
(Note: $ E_{n,j} $ is an ad hoc abbreviation based on the preceding paragraphs.)
So for $0\leq j<2y_j-1$ we have $\sin \log (j+y_n)>\cos (\pi/4)>1/2.$
Now $y_n\to \infty$ as $n\to \infty$ and we have $$\sum_{v=y_n}^{2y_n-1}\frac {\sin \log v}{v}=\sum_{j=0}^{y_n-1}\frac {\sin \log (j+y_n)}{j+y_n}>\sum_{j=0}^{y_n-1}\frac {1/2}{2y_n}=\frac {1}{4}.$$
So the Cauchy Criterion is not met.