$\nabla_X (a^TXb)$ where $a$ and $b$ are vectors, and $X$ is a positive matrix. How to solve this?
2 Answers
$f(X) = a^T X b; \tag 1$
$f(X + H) = a^T(X + H)b = a^T X b + a^T H b; \tag 2$
$f(X + H) - f(X) = a^T H b; \tag 3$
$f(X + H) - f(X) - a^T H b = 0; \tag 4$
since
$\displaystyle \lim_{\Vert H \Vert \to 0} \dfrac{0}{\Vert H \Vert} = 0, \tag 5$
it follows that the linear map
$H \to a^T H b = f(H) \tag 6$
is the derivative of the linear map (1) with respect to $X$, a result which squares with the well-known fact that the derivative of a linear map is the map itself.
- 72,871
$$f (\mathrm X) := \mathrm a^\top \mathrm X \,\mathrm b = \mbox{tr} \left( \mathrm a^\top \mathrm X \,\mathrm b \right) = \mbox{tr} \left( \mathrm b \mathrm a^\top \mathrm X \right) = \langle \mathrm a \mathrm b^\top, \mathrm X \rangle$$
Hence,
$$\nabla_{\mathrm X} \, f (\mathrm X) = \mathrm a \mathrm b^\top$$
- 23,223
-
I see solution gives $\frac{1}{2}(ab^T+ba^T)$ how could that happens – ShaoyuPei Aug 21 '18 at 06:21
-
1
-
2