Evaluate $$I=\int \frac{dx}{(x^2-x+1)\sqrt{x^2+x+1}}$$
My book gave the substitution for $$\int \frac{dx}{P\sqrt{Q}}$$ as
$\frac{Q}{P}=t^2$ when $P$ and $Q$ are quadratic expressions
So accordingly i used
$$\frac{x^2+x+1}{x^2-x+1}=t^2 \tag{1}$$ we get
$$\frac{(1-x^2) \, dx}{(x^2-x+1)^2}=t \,dt$$
Then
$$I=\int \frac{\sqrt{x^2-x+1}\:dt}{1-x^2}$$
By Componendo Dividendo in $(1)$ we get
$$\frac{x^2+1}{x}=\frac{t^2+1}{t^2-1}$$
But how to express integrand purely in terms of $t$?