The general theorem related to this class of problems is:
let $c_i,r\in\Bbb{R}\space|\space r^k+c_1\cdot r^{k-1}+c_2\cdot r^{k-2}...+c_{k-2}\cdot r^2+c_{k-1}\cdot r+c_k=0$ is a polynomial with $k$ distinct roots $r_1,r_2,r_3,...,r_{k-1},r_k$.
Then $a_n=c_1\cdot a_{n-1}+c_2\cdot a_{n-2}+c_3\cdot a_{n-3}+...+c_{k-2}\cdot a_{n-k+2}+c_{k-1}\cdot a_{n-k+1}+c_k\cdot a_{n-k}$ is a recurrence relation of the sequence $\{a_0,a_1,a_2,a_3,...\}$ if and only if $a_n=\alpha_1\cdot r_1^n+\alpha_2\cdot r_2^n+\alpha_3\cdot r_3^n+...+\alpha_k\cdot r_k^n$ is the solution to the recurrence relation where $\alpha_i\in\Bbb{R}$ and are constants.
For $k=2$:
For $n>2\space\space T(n,2)=T(n-1,2)+T(n-2,2)$
$T(1,2)=1,\space T(2,2)=1$
so the next number in the sequence is generated by summing the previous two terms with starting with terms $1,1$ so this is the Fibonacci sequence.
$$a_n=a_{n-1}+a_{n-2},\space a_1=1,\space a_2=1$$
$$r^2=r+1 \rightarrow r^2-r-1=0$$
Using the quadratic formula we obtain the two solutions for $r$:
$$r_1=\frac{1+\sqrt{5}}{2},\space r_2=\frac{1-\sqrt{5}}{2}$$
$$\alpha_1\cdot\left(\frac{1+\sqrt{5}}{2}\right)^1+\alpha_2\cdot\left(\frac{1-\sqrt{5}}{2}\right)^1=1\space\space\space (eq. 1)$$
$$\alpha_1\cdot\left(\frac{1+\sqrt{5}}{2}\right)^2+\alpha_2\cdot\left(\frac{1-\sqrt{5}}{2}\right)^2=1\rightarrow\alpha_1\cdot\frac{3+\sqrt{5}}{2}+\alpha_2\cdot\frac{3-\sqrt{5}}{2}=1(eq. 2)$$
subtract equation 1 from equation 2 to get:
$$\alpha_1+\alpha_2=0 \rightarrow \alpha_2=-\alpha_1$$
substitute $\alpha_2$ into equation 1:
$$\alpha_1\cdot\frac{1+\sqrt{5}}{2}-\alpha_1\cdot\frac{1-\sqrt{5}}{2}=1\rightarrow\alpha_1\cdot\sqrt{5}=1\rightarrow\alpha_1=\frac{1}{\sqrt{5}},\space\alpha_2=-\frac{1}{\sqrt{5}}$$
$$T(n,2)=\frac{1}{\sqrt{5}}\cdot\left(\frac{1+\sqrt{5}}{2}\right)^n+\frac{1}{\sqrt{5}}\cdot\left(\frac{1-\sqrt{5}}{2}\right)^n$$
For general $k$ the recurrence relation is $a_n=a_{n-1}+a_{n-2}+a_{n-3}+\cdots+a_{n-k}$ and $j\in\Bbb{N}\space |\space 1\leq j\leq k$ all $a_j=1$
you then have to find the roots of the corresponding polynomial: $r^k-r^{k-1}-r^{k-2}-r^{k-3}-\cdots-r^2-r-1=0$
then to find the alpha constants you have to solve the system of equations:
$$
\begin{matrix}
\alpha_1\cdot r_1 & + & \alpha_2\cdot r_2 & + & \alpha_3\cdot r_3 & + & \cdots & + & \alpha_k\cdot r_k & = & 1 \\
\alpha_1\cdot r_1^2 & + & \alpha_2\cdot r_2^2 & + & \alpha_3\cdot r_3^2 & + & \cdots & + & \alpha_k\cdot r_k^2 & = & 1 \\
\alpha_1\cdot r_1^3 & + & \alpha_2\cdot r_2^3 & + & \alpha_3\cdot r_3^3 & + & \cdots & + & \alpha_k\cdot r_k^3 & = & 1 \\
\vdots & & \vdots & & \vdots & & \ddots & & \vdots \\
\alpha_1\cdot r_1^k & + & \alpha_2\cdot r_2^k & + & \alpha_3\cdot r_3^k & + & \cdots & + & \alpha_k\cdot r_k^k & = & 1\\
\end{matrix}
$$
Then you would have the solution for the equation:
$$T(n,k)=a_n=\alpha_1\cdot r_1^n+\alpha_2\cdot r_2^n+\alpha_3\cdot r_3^n+\cdots+\alpha_k\cdot r_k^n $$
However these equations become difficult to manage very quickly I started the process for $k=3$ below, and already the expressions became very unwieldy. The best you are probably going to be able to do when $k\gt3$ is to have close enough approximations for the alphas and r's so that you can find $a_n$ with an error bound of $\lt 0.5$ to make sure $a_n$ is correct to the nearest whole number.
For $n>3\space\space T(n,3)=T(n-1,2)+T(n-2,2)+T(n-3,3)$
$T(1,3)=1,\space T(2,3)=1\space T(3,3)$
$$a_n=a_{n-1}+a_{n-2}+a_{n-3},\space a_1=1,\space a_2=1,\space a_3=1$$
$$r^3=r^2+r+1 \rightarrow r^3-r^2-r-1=0$$
$$r_1=\frac{1 + \sqrt[3]{19 - 3\cdot\sqrt{33}} + \sqrt[3]{19 + 3\cdot\sqrt{33}}}{3}$$
$$ r_2=\frac{2 + \left(-1+i\cdot\sqrt{3}\right)\sqrt[3]{19 - 3\cdot\sqrt{33}} + \left(-1-i\cdot\sqrt{3}\right)\sqrt[3]{19 + 3\cdot\sqrt{33}}}{6}$$
$$ r_3=\frac{2 + \left(-1-i\cdot\sqrt{3}\right)\sqrt[3]{19 - 3\cdot\sqrt{33}} + \left(-1+i\cdot\sqrt{3}\right)\sqrt[3]{19 + 3\cdot\sqrt{33}}}{6}$$