What is the total space of the universal bundle over $B\mathbb{Q}$, i.e. what is $E\mathbb{Q}$ for $B\mathbb{Q}=E\mathbb{Q}/\mathbb{Q}$ where $B\mathbb{Q}$ is the classifying space?
Thoughts/Attempt: $B\mathbb{Q}=E\mathbb{Q}/\mathbb{Q}$ and $B\mathbb{Q}=K( \mathbb{Q},1)$ so $E\mathbb{Q}=K( \mathbb{Q},1)\rtimes\mathbb{Q}$. Now we just need $K(\mathbb{Q},1).$ The classifying space of $\mathbb{Z}$ is a canonical example, but I haven't seen it for $\mathbb{Q}$.
Thanks in advance! I would be grateful for any help.