In a random graph $G(n, p)$, the exact probability of the graph being connected can be written as: $$ f(n) = 1-\sum\limits_{i=1}^{n-1}f(i){n-1 \choose i-1}(1-p)^{i(n-i)} $$
This probability is claimed to converge to 1, when $n \rightarrow +\infty$. Empirically simulating this function, indeed it converges to 1, for different values of $p$.
Additionally, I conjecture that this function is an strictly increasing with $n$ (for $n > 2$ and $p > 0.5$). Any thoughts on how we can prove/disprove this conjecture?
Here is an effort:
If I prove that $f(n) - f(n-1) > 0$ for any $n > 2$, I'm done (proving that it's strictly increasing). $$ f(n) - f(n-1) = \left(1-\sum\limits_{i=1}^{n-1}f(i){n-1 \choose i-1}(1-p)^{i(n-i)} \right) - \left(1-\sum\limits_{i=1}^{n-2}f(i){n-2 \choose i-1}(1-p)^{i(n-1-i)} \right) \\ = \sum\limits_{i=1}^{n-2}f(i){n-2 \choose i-1}(1-p)^{i(n-1-i)} - \sum\limits_{i=1}^{n-1}f(i){n-1 \choose i-1}(1-p)^{i(n-i)} \\ = \sum\limits_{i=1}^{n-2}f(i){n-2 \choose i-1}(1-p)^{i(n-1-i)} - \sum\limits_{i=1}^{n-2}f(i){n-1 \choose i-1}(1-p)^{i(n-i)} - (n-1) \cdot f(n-1)(1-p)^{n-1} \\ = \sum\limits_{i=1}^{n-2}f(i){n-2 \choose i-1}(1-p)^{i(n-1-i)} - \sum\limits_{i=1}^{n-2}f(i){n-2 \choose i-1}(1-p)^{i(n-1-i)} \times \frac{n-1}{n-i} (1-p)^{i} - (n-1) \cdot f(n-1)(1-p)^{n-1} \\ = \left\lbrace \sum\limits_{i=1}^{n-2}f(i){n-2 \choose i-1}(1-p)^{i(n-1-i)} \times \left[ 1 - \frac{n-1}{n-i} (1-p)^{i}\right] \right\rbrace - (n-1) \cdot f(n-1)(1-p)^{n-1} \\ $$
Since $p > 0.5$, $1-p < 0.5$ and $\frac{n-1}{n-i} (1-p)^{i} < 1$ (for any $i$). Hence the first term is positive. However, this is not enough for proving the strict increasing behavior of $f(n)$; we have to show that this is first term is strictly biggeer than the 2nd (negative) term.
Let's try the first few terms. One can see that the first few terms of this function is ($q = 1-p$): $$ f(2) = 1-q \\ f(3) = 1 - 3q^2 + 2q^3 \\ f(4) = 1 - 4q^3 - 3q^4 + 12q^5 - 6q^6 \\ f(5) = 1 - 5q^4 - 10q^6 + 20q^7 + 30q^8 - 60q^9 + 24q^{10} \\ $$
Here I plot the differences $f(i) - f(i-1)$:
$$
f(3) - f(2) = -3q^2 + 2q3 + q
$$

$$
f(4) - f(3) = - 4q^3 - 3q^4 + 12q^5 - 6q^6 - (- 3q^2 + 2q^3)
$$

$$
f(5) - f(4) = - 5q^4 - 10q^6 + 20q^7 + 30q^8 - 60q^9 + 24q^{10} - (- 4q^3 - 3q^4 + 12q^5 - 6q^6)
$$

Visuallly all the difference functions are positive for $q < 0.5 (i.e. $p > 0.5$)$ (i.e. conjecture is supported).