After reading the other question about the Monty Hall problem, and seeing the solution of it, before giving my perspective to the question, I would like to point out that, to explain the possible cases, we either fix the doors that I choose and Monty Hall opens, and permutate the values of the doors, i.e what is behind them, or we fix the values of the door, and permutate the door we and Monty Hall chooses.
Given that, let WLOG I choose the first door and Monty Hall opens the 3rd door, then we have the following cases;
1-> car 2-> goat 3-> goat
or
1-> goat 2-> car 3->goat
Since, we do know that the car is not behind the door 3.
So, there is only 2 option in one of them I win, and in the other I loose, hence the there is no difference in changing the door I chose first, hence the probability of the door 1 has the case is 1/2.
So my question is what exactly wrong with this argument ? Exactly which step of the argument fails to be true ?
Edit:
In this question, I was pointing out some of the problems that I general answer to Monty Hall problems contains, so it is different than the question that is claimed that this question to be duplicate of.