In A Course in Computational Algebraic Number Theory by Henri Cohen, see Appendix B.4, Table of Class Numbers and Units of Totally Real Number Fields, pages 521-523. Apparently I made a jpeg of this years ago.
The material underlying my conclusion is the main Theorem in Spearman Williams (1992)
If you wish, you may use
$$ p = x^2 - 229 y^2 $$
First Version:
$$ p = x^2 + 15 xy - y^2 $$
Represented (positive) primes up to 10000
37 53 173 193 229 241 347 359 383 439
443 449 461 503 509 541 593 607 617 619
643 691 907 967 977 1019 1051 1063 1097 1109
1249 1277 1291 1303 1321 1399 1429 1583 1667 1741
1783 1993 1997 2003 2087 2137 2143 2333 2347 2351
2371 2381 2393 2503 2579 2657 2677 2687 2699 2729
2749 2767 2791 2803 2897 3019 3023 3121 3203 3371
3373 3391 3491 3517 3539 3581 3583 3631 3637 3761
3767 3823 3847 3881 3889 3907 3919 4001 4019 4127
4139 4177 4217 4273 4339 4397 4421 4481 4483 4523
4547 4597 4637 4663 4679 4691 4871 4889 5087 5119
5167 5209 5399 5479 5507 5521 5581 5647 5683 5689
5737 5741 5843 5869 5879 5939 6007 6037 6203 6263
6277 6301 6397 6421 6449 6547 6563 6581 6653 6701
6719 6827 6871 6907 6967 7019 7039 7253 7283 7331
7333 7499 7573 7621 7691 7823 7883 7907 8011 8059
8123 8147 8219 8233 8243 8269 8429 8537 8573 8581
8669 8677 8713 8753 8849 8863 8951 9007 9049 9187
9221 9281 9341 9403 9497 9619 9643 9689 9739 9769
9787 9851 9883
---------------------------------------
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
these are the collection of remainders when dividing by 229
0 1 3 4 5 9 11 12 14 16
17 19 20 25 26 27 36 37 42 43
44 45 46 49 51 53 55 56 57 60
61 62 64 70 71 76 78 80 81 82
83 85 91 94 95 97 99 100 103 104
108 111 118 121 126 129 130 132 134 135
138 144 146 147 148 149 151 154 158 159
161 165 167 168 169 171 172 173 176 180
181 183 184 185 186 187 193 196 202 204
209 210 212 213 214 217 218 220 225 226
228
=====================================================

Next are two pages from the 1976 article by Daniel Shanks, which states the theorem about cubic fields without proof. It is the paragraph on page 29 that begins "The general rule is simply this:"
