Problem:
Let $K$ be a quadratic field, $\mathcal{O}_K$ its ring of integers. Now I want to prove the equality
$$D(\mathfrak{a}) = \mathcal{N}(\mathfrak{a})^2 \cdot \Delta_K $$
where $\mathfrak{a} \subseteq K$ is a fractional ideal, $D(\mathfrak{a})$ is the Idealdiscriminant, $\mathcal{N}(\mathfrak{a})$ is the Idealnorm and $\Delta_K$ is the discriminant of $K$.
Attempt:
Let $(1, \omega)$ be an integral basis of $\mathcal{O}_K$, $n \in \mathbb{N}$ such that $n \mathfrak{a} \subseteq \mathcal{O}_K$, $(x, y)$ an integral basis of $n\mathfrak{a}$. (Disclaimer: I'm not required to show that such a basis, $n$ exist).
$$\implies \hspace{15pt}(\frac{x}{n}, \frac{x}{n}) \text{ is an integral basis of } \mathfrak{a}$$ There are also $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ satisfying: $$x = a_1 + a_2 \omega \hspace{30pt} y = b_1 + b_2\omega$$ Using the definition of $D(\mathfrak{a})$:
$$ D(\mathfrak{a}) = \text{det}\left[ {\begin{array}{cc} \frac{x}{n} & \frac{y}{n} \\ \frac{\bar x}{n} & \frac{\bar y}{n} \\ \end{array} } \right]^2 = \frac{1}{n^4} \cdot \text{det}\left[ {\begin{array}{cc} x & y \\ \bar x & \bar y \\ \end{array} } \right]^2 = \frac{(x\bar y - \bar x y)^2}{n^4} \\ = \frac{((a_1 + a_2\omega)(b_1 + b_2\bar\omega) - (a_1 + a_2\bar\omega)(b_1 + b_2\omega))^2}{n^4} \\ = \frac{(a_1b_2(\bar\omega - \omega) + a_2b_1(\omega - \bar\omega))^2}{n^4} \\ = \frac{(\bar\omega - \omega)^2(a_1b_2 - a_2b_1)^2}{n^4} \\ = \frac{\Delta_K(a_1b_2 - a_2b_1)^2}{n^4} $$
At this point it would be really nice if $\mathcal{N}(\mathfrak{a}) = \frac{a_1b_2 - a_2b_1}{n^2}$. This is the case iff $\mathcal{N}(n\mathfrak{a}) = a_1b_2 - a_2b_1$. Sadly I have no clue how to prove this last equality. I would be happy as well if someone provided a simpler proof to the initial equality.