Let $l:=\text{lcd}(n,m)$. Show $\mathbb Q(\zeta_n,\zeta_m)=\mathbb Q(\zeta_l)$.
What I got:
$\subseteq$: Let $\text{lcm}(n,m)=r\cdot n=s\cdot m$. Then $$\zeta_l^r=\exp\left(\frac{2\pi i r}{l}\right)=\exp\left(\frac{2\pi i}{n}\right)=\zeta_n$$ and $$\zeta_l^s=\exp\left(\frac{2\pi i s}{l}\right)=\exp\left(\frac{2\pi i}{m}\right)=\zeta_m.$$
$\supseteq$: Bezout's theorem guarantees the existence of $a,b\in\mathbb Z$ with $n\cdot a+m\cdot b=\gcd(n,m)$ so we have $\text{lcm}(n,m)=\frac{n\cdot m}{n\cdot a+m\cdot b}$, and thus $$\displaystyle{\zeta_n^b\cdot\zeta_m^a}=\exp\left(\frac{2\pi i}{n}b\right)\exp\left(\frac{2\pi i}{m}a\right)=\exp\left(2\pi i\frac{bm+an}{nm}\right)=\exp\left(\frac{2\pi i}{l}\right)=\zeta_l.$$
Is my proof correct? And if so, is there anything else do add?