Let $\mathbb{K}$ be a field and $A$ a finite dimensional $\mathbb{k}$-algebra with identity $1_{A}$. For two $A$-modules $M$ and $N$ we have the set of all $A$-linear maps from $M$ to $N$ denoted $\mathrm{Hom}_{A}(M,N)$. This set is not in general an $A$-module neither by the left nor by the right (unless the $\mathbb{k}$-algebra $A$ is a commutative). Recall that any $A$-module $M$ is also a $\mathbb{K}$-vector space by the action: $$\lambda\cdot m = (\lambda 1_{A}) m,\quad \forall\,m\in M\,,\lambda\in\mathbb{k}$$
In particular, the set of $A$-linear maps $\mathrm{Hom}_{A}(M,N)$ is also a $\mathbb{k}$-vector space using:
$$(\lambda\cdot f)(m)=(\lambda 1_{A})f(m).$$ It's known that $\ \dim_{\mathbb{K}}(M)<\infty\ $ and $\ \dim_{\mathbb{K}}(N)<\infty\quad$ implies $$\quad \dim_{\mathbb{K}}\left(\mathrm{Hom}_{A}(M,N)\right)<\infty.$$
Is there any formula for $$\dim_{\mathbb{K}}\left(\mathrm{Hom}_{A}(M,N)\right)$$ when $M$ and $N$ are finite dimensional $A$-modules, that is, $\dim_{\mathbb{K}}(M)<\infty$ and $\dim_{\mathbb{K}}(N)<\infty$ ?
we already know when $A=\mathbb{K}$ that: $$\dim_{\mathbb{K}}\left(\mathrm{Hom}_{\mathbb{K}}(M,N)\right)=\dim_{\mathbb{K}}(M)\dim_{\mathbb{k}}(N)$$