How to show $u_n(x)=\dfrac{\sin^2(nx)}{n\sin(x)}$ converges uniformly
Attempt :
Let $\varepsilon >0$, and this interval $[\varepsilon, \pi-\varepsilon]$
Then $\forall x\in[\varepsilon, \pi-\varepsilon], \quad \dfrac{\sin^2(nx)}{n\sin(x)}\le \dfrac{1}{n\varepsilon}$ hence $u_n(x)\overset{\text{unif.}}{\longrightarrow}0$ on $[\varepsilon, \pi-\varepsilon]$
We consider now $C(t):=\dfrac{\sin t}{t}$
Then we have $u_n(x)=\sin(nx)C(nx)$, and since $|C(nx)|\le1$
We have $|\sin(nx)C(nx)|\le|\sin(nx)|\le |nx|$
We can conclude that : $|x|<\dfrac{\varepsilon}{n}\implies |u_n(x)|<\varepsilon$ and
$u_n(x)\overset{\text{unif.}}{\longrightarrow}0$ on $\left[0, \dfrac{\varepsilon}{n}\right)$
Now I 've got a gap for $x\in \left[\dfrac{\varepsilon}{n},\varepsilon\right)$, which $u_n(x)$ doesn't seem to converge uniformly, May you confirm please?