$$\int x(x^2+2)^4\,dx $$
When we do this integration with u substitution we get $$\frac{(x^2+2)^5}{10}$$ as $u=x^2+2$
$du=2x\,dx$ $$\therefore \int (u+2)^4\,du = \frac{(x^2+2)^5}{10} + C$$
Although when we expand the fraction and then integrate the answer we get is different:
$x(x^2+2)^4=x^9+8x^7+24x^5+32x^3+16x$ $$\int x^9+8x^7+24x^5+32x^3+16x \,dx$$
we get
$$\frac {x^{10}}{10} +x^8+4x^6+8x^4+8x^2 + C$$
For a better idea of the questions, let's say the questions asks us to find the value of C when y(0)=1
Now,
$x=0$
$$\frac {0^{10}}{10} + 0^8 + 4(0)^6 + 8(0)^4 + 8(0)^2 + C = 1$$ $$\therefore C= 1$$ AND $$\frac {(0+2)^5}{10} + C= 1$$ $$\therefore \frac {32}{10} + C = 1$$ $$\therefore C = 1 - 3.2 = -2.2$$