My second proof for the left inequality.
Remark. The trouble is $m \approx 1$ for which $x_1 + x_2 - \frac95 - \ln(1+m)$ is small. For example, when $m=1$, $x_1 + x_2 - \frac95 - \ln(1+m) \approx 0.006$.
Note that $f(x)$ is strictly decreasing on $(0, 1)$ and strictly increasing on $(1, \infty)$,
and $\lim_{x\to 0^{+}} f(x) = \infty$,
and $\lim_{x\to \infty} f(x) = \infty$,
and $f(1) = 0$. Thus, we have $m > 0$
and $0 < x_1 < 1 < x_2$. We need to prove that
$$\frac95 + \ln(1 + m) < x_1 + x_2. \tag{1}$$
We split into three cases.
- Case 1. $0 < m \le \frac23$
Let
$$g(x) := \frac{12(x-1)^2}{-x^2 + 8x + 5}.$$
We have
$$f(x) - g(x) \left\{\begin{array}{ll}
> 0 & 0 < x < 1\\
= 0 & x = 1\\
< 0 & 1 < x < 3.
\end{array}
\right. \tag{2}$$
Note that $g(x)$ is strictly decreasing on $(0, 1)$ and strictly increasing on $(1, 3)$, and $g(1) = 0$, and $g(0) = 12/5 > 2/3$, and $g(3) = 12/5 > 2/3$. Thus,
$g(x) = m$ has exactly two distinct real roots $0 < x_3 < 1 < x_4 < 3$.
Also, from (2), we have $x_3 < x_1$ and $x_4 < x_2$. Thus, we have
$x_1 + x_2 > x_3 + x_4$. It suffices to prove that
$$\frac95 + \ln(1 + m) \le x_3 + x_4. \tag{3}$$
$x_3, x_4$ are two distinct real roots of the quadratic equation
$12(x-1)^2 = m(-x^2 + 8x + 5)$ that is
$$(m+12)x^2 + (-8m-24)x - 5m+12 = 0. $$
By Vieta's theorem, we have $x_3 + x_4 = \frac{8m + 24}{m+12}$. To prove (3), it suffices to prove that
$$\frac95 + \ln(1 + m) \le \frac{8m + 24}{m+12}$$
which is true (easy by calculus).
- Case 2. $2/3 < m < 103/50$
We claim that $x_1 > \frac{8}{31} - \frac{7}{30}(m - 1) > 0$. It suffices to prove that
$$f(x_1) = m < f\left(\frac{8}{31} - \frac{7}{30}(m - 1)\right),$$
or
$$m < - \left(\frac{473}{930} + \frac{7}{30}m\right)\ln\left(\frac{457}{930} - \frac{7}{30}m\right)$$
which is true (not difficult by calculus). The claim is proved.
To prove (1), it suffices to prove that
$$\frac95 + \ln(1 + m) \le \frac{8}{31} - \frac{7}{30}(m - 1) + x_2, $$
or
$$\frac{1217}{930} + \frac{7}{30}m + \ln(1 + m) \le x_2.$$
It suffices to prove that
$$f\left(\frac{1217}{930} + \frac{7}{30}m + \ln(1 + m)\right) \le f(x_2) = m,$$
or
$$\left(\frac{287}{930} + \frac{7}{30}m + \ln(1 + m)\right)\ln\left(\frac{1217}{930} + \frac{7}{30}m + \ln(1 + m)\right) \le m, $$
or
$$H(m) := \frac{m}{\frac{287}{930} + \frac{7}{30}m + \ln(1 + m)} - \ln\left(\frac{1217}{930} + \frac{7}{30}m + \ln(1 + m)\right) \ge 0.$$
It is not difficult to prove that
$H'(m) > 0$ (using $\ln(1 + m) \ge \frac{9}{13} + \frac{2(m-1)}{3+m}$ for all $m\ge 2/3$).
Also, $H(2/3) > 0$. Thus, $H(m) \ge 0$ on $[2/3, 103/50]$.
- Case 3. $m \ge \frac{103}{50}$
To prove (1), it suffices to prove that $\frac95 + \ln(1+m) \le x_2$. It suffices to prove that
$$f\left(\frac95 + \ln(1+m) \right) \le f(x_2) = m,$$
or
$$\left(\frac95 + \ln(1+m) - 1\right)\ln \left(\frac95 + \ln(1+m)\right) \le m,$$
or
$$G(m) := \frac{m}{4/5 + \ln(1 + m)} - \ln \left(\frac95 + \ln(1+m)\right) \ge 0.$$
It is not difficult to prove that
$G'(m) > 0$ (using $\ln(1 + m) \ge \frac{2m}{2+m}$ for all $m \ge 0$).
Also, $G(103/50) > 0$. Thus, $G(m) \ge 0$ on $[103/50, \infty)$.
We are done.