2

$f(x)=\frac{1}{2}x^\intercal W x$, where $W$ is positive definite, not necessarily the identity matrix. $\nabla^2 f(x)=W$. Is $f(x)$ strongly convex with the parameter $m={}?$

Gibbs
  • 8,480
  • 4
  • 15
  • 29
jsmath
  • 411

1 Answers1

3

Strong convexity of $f$ with parameter $m$ is equivalent to $\nabla^2 f(x) \succeq m I$, so in your case, $f$ is strongly convex with parameter $m$ being the smallest eigenvalue of $W$.

angryavian
  • 93,534