Let $E$ be a $\mathbb R$-Banach space, $(f_n)_{n\in\mathbb N}\subseteq C^0([0,\infty), E)$ and $$g_n(t):=\sup_{s\in[0,\:t]}\left\|f_n(s)\right\|_E\;\;\;\text{for }t\ge0.$$ Note that $(g_n)_{n\in\mathbb N}\subseteq C^0([0,\infty), E)$. Now, let $$h(t):=\sup_{n\in\mathbb N}g_n(t)\;\;\;\text{for }t\ge0.$$
Assuming that $$\sup_{s\in[0,\:t]}\left\|f_m(s)-f_n(s)\right\|_E\xrightarrow{m,\:n\:\to\:\infty}0\tag1\;\;\;\text{for all }t\ge0,$$ are we able to show that $h$ is continuous?
I've found the claim in a book, but I don't see how we can prove it. Let $t\ge0$ and $\varepsilon>0$. By $(1)$, $$\sup_{s\in[0,\:t]}\left\|f_m(s)-f_n(s)\right\|_E<\varepsilon\;\;\;\text{for all }n\ge N\tag2$$ for some $N\in\mathbb N$ and hence $$|g_n(t)-g_N(t)|\le\sup_{s\in[0,\:t]}\left\|f_n(s)-f_N(s)\right\|_E<\varepsilon\;\;\;\text{for all }n\ge N\tag3.$$ Now, \begin{equation}\begin{split}|h(s)-h(t)|&\le\sup_{n\in\mathbb N}|g_n(s)-g_n(t)|\\&\le\sup_{n\in\mathbb N}|g_n(s)-g_N(s)|+\sup_{n\in\mathbb N}|g_n(t)-g_N(t)|+\sup_{n\in\mathbb N}|g_N(s)-g_N(t)|\end{split}\tag4\end{equation} for all $s\ge0$, but I don't see, for example, how we can estimate the first term on the right-hand side of $(4)$ (we only know that it is at most $\max(g_1(s),\ldots,g_{N-1}(s),\varepsilon)$). So, how do we need to argue?