Find set of points from which start two perpendicular tangent lines to hyperbola $$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$
Tangent lines to a hyperbola are $y=mx+\sqrt{a^2m^2-b^2}$ and $y=mx-\sqrt{a^2m^2-b^2}$. Two lines $y=a_1x+b_1$, $y=a_2x+b_2$ are perpendicular if $a_1a_2=-1$.
What I want to achieve is circle $\{x^2+y^2=a^2-b^2\}$.