I am interested in knowing the generalized classifying spaces (related to Eilenberg–MacLane space $K(G,n)$ when $G$ is discrete) for explicit group examples ($G=$ the entries given at the top row) given below. Can someone fill in the Table?
$$\begin{array}{c|c|c|c|c|c|c|} G & \mathbb{Z}^n & \mathbb{Z} & \mathbb{R} &\mathbb{R}/\mathbb{Z}=U(1) & \mathbb{Z}_2 & \mathbb{Z}_n \\ \hline BG & T^n & S^1 & & CP^{\infty} & RP^{\infty} & S^{\infty}/\mathbb{Z}_n \\ \hline B^2G & & CP^{\infty} & & & & \\ \hline B^3G & & & & & & \\ \hline \end{array}$$
Here we define $B^nG$ as the $\pi_{n}(B^nG)=G$, while other homotopy groups are zero, $\pi_{i}(B^nG)=0$, for $i \neq n$.