Notice that if we had the circle $x^2 + y^2 = 1$ we would be able to display all the linear self-maps. The ones with positive determinant are
$$
\left(
\begin{array}{cc}
\cos \theta & \sin \theta \\
- \sin \theta & \cos \theta
\end{array}
\right)
$$
while the ones with negative determinant are
$$
\left(
\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & - \cos \theta
\end{array}
\right)
$$
In order to use these, we need first to map the ellipse to the circle, then use one of the above, then back from the circle to your ellipse.
Ellipse to circle, simplest version, is
$$
\left(
\begin{array}{cc}
1 & 0 \\
0 & \sqrt 2
\end{array}
\right)
$$
All of the maps are among
$$
\left(
\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{ \sqrt 2}
\end{array}
\right)
\left(
\begin{array}{cc}
\cos \theta & \sin \theta \\
- \sin \theta & \cos \theta
\end{array}
\right)
\left(
\begin{array}{cc}
1 & 0 \\
0 & \sqrt 2
\end{array}
\right) =
\left(
\begin{array}{cc}
\cos \theta & \sqrt 2 \; \sin \theta \\
- \frac{\sin \theta}{\sqrt 2} & \cos \theta
\end{array}
\right)
$$
$$
\left(
\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{ \sqrt 2}
\end{array}
\right)
\left(
\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & - \cos \theta
\end{array}
\right)
\left(
\begin{array}{cc}
1 & 0 \\
0 & \sqrt 2
\end{array}
\right) =
\left(
\begin{array}{cc}
\cos \theta & \sqrt 2 \; \sin \theta \\
\frac{\sin \theta}{\sqrt 2} & - \cos \theta
\end{array}
\right)
$$
With these you can easily check the fact that each of the matrices $P$ above is an "automorphism" of the quadratic form, represented by half its Hessian matrix. This is exactly what @amd talks about as
$$ \color{magenta}{ M^T C M = C } $$
$$
\color{teal}{
\left(
\begin{array}{cc}
\cos \theta & - \frac{\sin \theta}{\sqrt 2} \\
\sqrt 2 \; \sin \theta & \cos \theta
\end{array}
\right)
\left(
\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}
\right)
\left(
\begin{array}{cc}
\cos \theta & \sqrt 2 \; \sin \theta \\
- \frac{\sin \theta}{\sqrt 2} & \cos \theta
\end{array}
\right)=
\left(
\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}
\right)}
$$
$$ \color{blue}{
\left(
\begin{array}{cc}
\cos \theta & \frac{\sin \theta}{\sqrt 2} \\
\sqrt 2 \; \sin \theta & - \cos \theta
\end{array}
\right)
\left(
\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}
\right)
\left(
\begin{array}{cc}
\cos \theta & \sqrt 2 \; \sin \theta \\
\frac{\sin \theta}{\sqrt 2} & -\cos \theta
\end{array}
\right)=
\left(
\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}
\right) }
$$