I am trying to show that $\mathbb{Z}/3\mathbb{Z}$ is a projective $\mathbb{Z}/12\mathbb{Z}$-module but not a free $\mathbb{Z}/12\mathbb{Z}$-module.
So, far I have been able to show that $4(\mathbb{Z}/12\mathbb{Z})\cong \mathbb{Z}/3\mathbb{Z}$ and $3(\mathbb{Z}/12\mathbb{Z})\cong \mathbb{Z}/4\mathbb{Z}$. Moreover, $\mathbb{Z}/3\mathbb{Z}\bigcap \mathbb{Z}/4\mathbb{Z}=\{0\}$. So that $\mathbb{Z}/12\mathbb{Z}\cong \mathbb{Z}/3\mathbb{Z}\bigoplus \mathbb{Z}/4\mathbb{Z}$.
Now, I want an easy way of seeing that $\mathbb{Z}/3\mathbb{Z}$ is not a free on $\mathbb{Z}/12\mathbb{Z}$.
Also, that $\mathbb{Z}/3\mathbb{Z}$ is a projective $\mathbb{Z}/12\mathbb{Z}$-module.