Greetings I want to evaluate $\displaystyle\lim_{n\rightarrow\infty} \int_{0}^{\pi} \frac {\sin x}{1+ \cos^2 (nx)} dx$.
Here is my try: We have that $x\in[0,\pi]$ so $$\cos(n\pi)\le \cos(nx) \le 1.$$ Here I am not sure, but if it's correct then it gives: $$\frac{1}{2}\le\frac{1}{1+\cos^2(nx)}\le \frac{1}{1+\cos^2(n\pi)},$$ giving $$\lim_{n\rightarrow\infty} \frac{1}{2}\int_0^{\pi} \sin x dx \le \lim_{n\rightarrow\infty} \int_{0}^{\pi} \frac {\sin x}{1+ \cos^2 (nx)} dx \le \lim_{n\rightarrow\infty} \int_{0}^{\pi} \frac {\sin x}{1+ \cos^2 (n\pi)} dx.$$ Since $$\int_0^{\pi} \sin x dx =2$$ By squeeze theorem we may conclude that $\displaystyle \lim_{n\rightarrow\infty} \int_{0}^{\pi} \frac {\sin x}{1+ \cos^2 (nx)} dx=1$. Could you help me evaluate this, if it's wrong?