Let $v_p(n)$ be the highest power of $p$ that divides $n$.
It seems to me that for any prime $p$, $v_p\left({{x+n} \choose {n}}\right) \le \max\left(v_p(x+1), v_p(x+2), \dots, v_p(x+n)\right)$
Am I right?
Here's my thinking:
(1) Let $S_p$ be the set of integers $x+c$ such that $x+1 \le x+c \le x+n$ and $p | (x+c)$ and $|S_p|$ the number of elements in the set.
(2) Let $T_p$ be the set of integers $c \le n$ that are divisible by $p$ and the $|T_p|$ the number of elements in the set.
(3) $|S_p| \le |T_p| + 1$ since $|S_p| = \left\lfloor\frac{x+n}{p}\right\rfloor - \left\lfloor\frac{x}{p}\right\rfloor = \frac{x+n-a}{p} - \frac{x-b}{p}=\frac{n+b-a}{p}\le \left\lfloor\frac{n}{p}\right\rfloor + 1$ where $0 \le a,b < p$.
(4) Let $d \in S_p$ have the property that $v_p(d) = \max\left(v_p(x+1), v_p(x+2), \dots, v_p(x+n)\right)$
(5) It follows that:
$$\sum_{1 \le i \le |S_p|-1}v_p(d-i\cdot p) = \sum_{1 \le i \le |S_p|-1}v_p(d+i\cdot p) = \sum_{1 \le i \le |S_p|-1}v_p(i\cdot p) $$
(6) If $d$ is the first or last element of the sequence and $|S_p| = |T_p|+1$, then all other values cancel out and:
$$v_p\left({{x+n}\choose{n}}\right) = \max\left(v_p(x+1), v_p(x+2), \dots, v_p(x+n)\right)$$
(7) If $d$ is the first or last element of the sequence and $|S_p| = |T_p|$, then all the other values cancel out and:
$$v_p\left({{x+n}\choose{n}}\right) = \max\left(v_p(x+1), v_p(x+2), \dots, v_p(x+n)\right) - v_p(|T_p|\cdot p)$$
(8) If $d$ is not the first or last element, then from (5), we can conclude:
$$\sum_{s \in S_p}v_p(s) - v_p(d) \le \sum_{t \in T_p}v_p(t)$$