The Plane: $x+y=4$
The Cylinder: $y^2+9z^2=16$
I have gone this far but I'm not sure it's true $$V=\int\limits_0^4\int\limits_0^{4-x}\int\limits_0^{\sqrt{16-y^2}/9} dz\ dy\ dx$$ PS: Answer can contain $\pi$ if needed.
The Plane: $x+y=4$
The Cylinder: $y^2+9z^2=16$
I have gone this far but I'm not sure it's true $$V=\int\limits_0^4\int\limits_0^{4-x}\int\limits_0^{\sqrt{16-y^2}/9} dz\ dy\ dx$$ PS: Answer can contain $\pi$ if needed.
\begin{align} V&=\int_0^4\int_0^{4-x}\int_0^{\sqrt{16-y^2}/3} dzdydx \\ &= \int_0^4\int_0^{4-y}\int_0^{\sqrt{16-y^2}/3} dzdxdy \\ &= \int_0^4 (4-y) \, \frac{\sqrt{16-y^2}}3 dy \\ &= \frac13 \left[ 4\int_0^4 \sqrt{16-y^2} dy - \int_0^4 y\sqrt{16-y^2} dy \right] \\ &= \frac13 \left[ 4 \, \frac{\pi(4^2)}{4} + \frac12 \int_0^4 \sqrt{16-y^2} d(16-y^2) \right] \\ &= \frac13 \left[ 4 \, \frac{\pi(4^2)}{4} - \frac12 \,\frac23 \, 16^{3/2} \right] \\ &= \frac13 \left( 16\pi - \frac{64}{3} \right) \\ &= \frac{16(3\pi-4)}{9} \end{align}
Comparison of my answer with another answer
Since pictures are used for illustration, let me also use them.


Yes it is (almost) correct, indeed we need to consider that the plane intersect the cylinder according to the following sketch, then the set up is as follow
$$V=\int_0^4 dx\int_0^{4-x}dy\int_0^{\sqrt{\frac{16-y^2}{9}}} dz$$
\fracin exponents or limits of integrals. – GNUSupporter 8964民主女神 地下教會 May 12 '18 at 17:32