$X$ and $Y$ are random independent variables such that:
$$P(X=1)=P(X=-1)=\frac{1}{2}$$ $$P(Y=1)=P(Y=-1)=\frac{1}{2}$$
We have that $Z=X\cdot Y$. Are $X$, $Y$, and $Z$ independent?
MY SOLUTION:
$X, Y, Z$ are independent if $P(X\cap Y\cap Z) = P(X)P(Y)P(Z)$.
$$Z = \left \{ (1)(1), (1)(-1), (-1)(1), (-1)(-1) \right \} = \left \{ -1,1 \right \}.$$ So, $$X = \left \{ -1,1 \right \}. P(X) = \frac{1}{2}.$$ $$Y=\left \{ -1,1 \right \}.P(Y) = \frac{1}{2}.$$ $$Z=\left \{ -1,1 \right \}.P(Z) = \frac{1}{2}.$$
$$X\cap Y\cap Z = \left \{ -1,1 \right \}.$$ $$P(X\cap Y\cap Z) = \frac{1}{2}.$$
So, since $P(X\cap Y\cap Z) = \frac{1}{2} \neq \frac{1}{8} = P(X)P(Y)P(Z)$, $X,Y,Z$ are NOT independent.
Is this correct?
Thanks for answering!