For $n\le m$, let $$ f(n,m)=n\ln((n+1)\ln(\ldots (m)\ldots))$$
i.e.,
$$f(n,m)=\begin{cases}n&n=m\\n\ln(f(n+1,m))&n<m\end{cases} $$
We want $\lim_{m\to\infty}f(1,m)$.
Clearly, $f(n,\cdot)$ is increasing (in particular, $f(n,m)\ge n$) so that convergence equals boundedness.
Compare $f(n+1,m+1)$ against $f(n,m)$.
If $m=n>10$, $f(n+1,m+1)=f(n,m)+1<2f(n,m)$.
By induction on $m-n$, for $m>n\ge 10$ as well
$$ \begin{align}f(n+1,m+1)&=(n+1)\ln( f(n+2,m+1) )\\&<(n+1)\ln(2f(n+1,m))\\&=(n+1)(\ln 2+\ln(f(n+1,m))\\&<(1+\tfrac1{10})n\cdot (1+\tfrac{\ln2}{\ln11})\ln(f(n+1,m))\\&<2f(n,m)\end{align}$$
So
$$f(n,m)<f(n+1,m+1)<2f(n,m)\qquad m\ge n\ge 10 $$
This makes
$$\tag1f(n,m)<f(n,m+1)=n\ln f(n+1,m+1)<n\ln f(n,m)+n\ln 2 $$
for $n\ge 10$. The right hand side is slower than linear in $f(n,m)$, hence $f(n,m)$ is bounded from above, $\lim_{m\to\infty}f(n,m)$ exists and ultimately so does $\lim_{m\to\infty}f(1,m)$
Remark: Numerically, $(1)$ gives us $f(10,m)<44.998$.
This trickles down to an upper bound
$$f(1,m)< 1.36794$$
But similarly, we find $f(20,m)<107$ and with that can improve the bound to $$f(1,m)<1.3679012618$$
(for comparison, $f(1,20)>1.3679012615$). Starting with a bound for $f(50,m)$, we can compute $$\lim f(1,m)=1.367901261797085169668909175760\ldots$$ to 30 decimals.