It seems like most game theory tutorials focus on 2-player games and often algorithms for finding Nash equilibria break down with 3+ players. So here is a simple question:
Is $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ the only Nash equilibrium in a 3-player game of Rock Paper Scissors? How can we discover this analytically?
Edit: Payoff matrices below, in terms of P1 payoff.
P1=Rock
P3
Rock Paper Scissors
----------------------------
Rock | 0 | -1 | 0.5 |
|--------------------------|
P2 Paper | -1 | -1 | 0 |
|--------------------------|
Scissors | 0.5 | 0 | 2 |
----------------------------
P1=Paper
P3
Rock Paper Scissors
----------------------------
Rock | 2 | 0.5 | 0 |
|--------------------------|
P2 Paper | 0.5 | 0 | -1 |
|--------------------------|
Scissors | 0 | -1 | -1 |
----------------------------
P1=Scissors
P3
Rock Paper Scissors
----------------------------
Rock | -1 | 0 | -1 |
|--------------------------|
P2 Paper | 0 | 2 | 0.5 |
|--------------------------|
Scissors | -1 | 0.5 | 0 |
----------------------------