I think Misha Lavrov's answer is better than mine, but my approach, though longer, does get the required results . . .
Let $m=n(r-1)$.
For a given member $y$ of your group, other than yourself, let $A$ be the event that you are connected to $y$ by a path of length at most two.
For a given member $z$ of one of the other groups, let $B$ be the event that you are connected to $z$ by a path of length at most two.
Then the expected number of vertices which are connected to you by a path of length at most two is just
$$(n-1)P(A)+mP(B)$$
and if $n$ is even, and each group has ${\large{\frac{n}{2}}}$ members of each gender, then the expected number of vertices whose gender is opposite to yours, and which are connected to you by a path of length at most two is just
$$\left({\small{\frac{n}{2}}}\right)\!P(A)+\left({\small{\frac{m}{2}}}\right)\!P(B)$$
It remains to compute $P(A)$ and $P(B)$.
Let $A',B'$ denote the complements of $A,B$, respectively (i.e., $A'=\text{not}\,A$, and $B'=\text{not}\,B$).
\begin{align*}
\text{Then}\;\;P(A')
&=(1-p)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\sum_{k=0}^{n-2}{\small{\binom{n-2}{k}}}p^k(1-p)^{(n-2)-k}(1-p)^k\right)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\sum_{k=0}^m{\small{\binom{m}{k}}}q^k(1-q)^{m-k}(1-q)^k\right)\\[8pt]
&=(1-p)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\sum_{k=0}^{n-2}{\small{\binom{n-2}{k}}}p^k(1-p)^{n-2}\right)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\sum_{k=0}^m{\small{\binom{m}{k}}}q^k(1-q)^m\right)\\[8pt]
&=(1-p)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left((1-p)^{n-2}\sum_{k=0}^{n-2}{\small{\binom{n-2}{k}}}p^k\right)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left((1-q)^m\sum_{k=0}^m{\small{\binom{m}{k}}}q^k\right)\\[4pt]
&=(1-p)\Bigl((1-p)^{n-2}(1+p)^{n-2}\Bigr)\Bigl((1-q)^m(1+q)^m\Bigr)\\[4pt]
&=(1-p)(1-p^2)^{n-2}(1-q^2)^m\\[20pt]
\text{and}\;\;P(B')
&=(1-q)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\sum_{k=0}^{n-1}{\small{\binom{n-1}{k}}}p^k(1-p)^{(n-1)-k}(1-q)^k\right)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\sum_{k=0}^{m-n}{\small{\binom{m-n}{k}}}q^k(1-q)^{(m-n)-k}(1-q)^k\right)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\sum_{k=0}^{n-1}{\small{\binom{n-1}{k}}}q^k(1-q)^{(n-1)-k}(1-p)^k\right)\\[8pt]
&=(1-q)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\sum_{k=0}^{n-1}{\small{\binom{n-1}{k}}}\bigl(p(1-q)\bigr)^k(1-p)^{(n-1)-k}\right)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left((1-q)^{m-n}\sum_{k=0}^{m-n}{\small{\binom{m-n}{k}}}q^k\right)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\sum_{k=0}^{n-1}{\small{\binom{n-1}{k}}}\bigl(q(1-p)\bigr)^k(1-q)^{(n-1)-k}\right)\\[8pt]
&=(1-q)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\bigl(p(1-q)+(1-p)\bigr)^{n-1}\right)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left((1-q)^{m-n}(1-q)^{m-n}\right)\\[0pt]
&\;\;\;\;\;{\LARGE{\cdot}}\left(\bigl(q(1-p)+(1-q)\bigr)^{n-1}\right)\\[4pt]
&=(1-q)(1-pq)^{2n-2}(1-q^2)^{m-n}\\[0pt]
\end{align*}
Finally, since $P(A)=1-P(A')$, and $P(B)=1-P(B')$, we get
\begin{align*}
P(A) &= 1-(1-p)(1-p^2)^{n-2}(1-q^2)^m\\[4pt]
P(B) &= 1-(1-q)(1-pq)^{2n-2}(1-q^2)^{m-n}\\[4pt]
\end{align*}
which completes the analysis.