Let $k$ be an algebraically closed field. The ideal-variety correspondence says that the equations \begin{align} \mathbf{I}(X) &= \left\{f\in k[x_1,\dotsc,x_n]:p\in X\Rightarrow f(p)=0\right\} \\ \mathbf{Z}(S) &= \left\{p\in \mathbb{A}^n_k:f\in S\Rightarrow f(p)=0\right\} \end{align} define inverse functors \begin{align} \mathbf{I} &: \mathrm{cl}\left(\mathbb{A}^n_k\right)^{\mathrm{op}}\rightarrow\sqrt{k[x_1,\dotsc,x_n]} \\ \mathbf{Z} &: \sqrt{k[x_1,\dotsc,x_n]}\rightarrow\mathrm{cl}\left(\mathbb{A}^n_k\right)^{\mathrm{op}}. \end{align} Here, $\mathrm{cl}\left(\mathbb{A}^n_k\right)$ denotes the collection of algebraic subsets of $\mathbb{A}^n_k$ viewed as a full subcategory of the poset $\cal{P}\left(\mathbb{A}^n_k\right)$ (the power set of $\mathbb{A}^n_k$). Similarly, $\sqrt{k[x_1,\dotsc,x_n]}$ denotes the collection of radical ideals of $k[x_1,\dotsc,x_n]$ viewed as a full subcategory of the poset $\cal{P}(k[x_1,\dotsc,x_n])$.
Now, obviously $\mathbf{I}$ and $\mathbf{Z}$ extend to functors \begin{align} \mathbf{I}&:\cal{P}\left(\mathbb{A}^n_k\right)^{\mathrm{op}}\rightarrow\cal{P}(k[x_1,\dotsc,x_n]) \\ \mathbf{Z}&:\cal{P}(k[x_1,\dotsc,x_n])\rightarrow\cal{P}\left(\mathbb{A}^n_k\right)^{\mathrm{op}}. \end{align} Of course, these functors are no longer inverses of one another after extension. I'd like to know what we can say about these extended functors. Specifically:
- Are $\mathbf{I}$ and $\mathbf{Z}$ adjoint functors?
- If $\mathbf{I}$ and $\mathbf{Z}$ are adjoint, then how general can we make the situation? Do they remain adjoint if $k$ is only assumed to be a commutative ring?
Since $S\subseteq\mathbf{I}(X)$ if and only if $X\subseteq\mathbf{Z}(S)$ I'm inclined to say that $\mathbf{I}$ is left adjoint to $\mathbf{Z}$ and only assuming $k$ to be a commutative ring doesn't seem to alter the situation, but I want to make sure I'm not making a mistake.