Let $x_\alpha$ be the stationary point of the $\alpha$th derivative of the function $f(x)=x^\alpha-\alpha^x$, and let $$\lambda_\alpha=\frac{f(-x_\alpha)}{-x_\alpha}.$$
For $\alpha\in\Bbb N$, does the limit $$\lim_{\alpha\to\infty}\bigg|\frac{\lambda_{\alpha+1}}{\alpha\lambda_\alpha}\bigg|$$ exist, and if so, what is its value?
We write $$\begin{align}f(x)=x^{\alpha}-\alpha^x&\implies f'(x)=\alpha x^{\alpha-1}-\alpha^x\ln\alpha\\&\implies\quad\quad\qquad\cdots\\&\implies f^{(\alpha)}(x)=\left[\prod_{i=0}^{\alpha-1}(\alpha-i)\right]-\alpha^x\ln^\alpha\alpha=0\end{align}$$ for stationary points. Then $$-x_\alpha=\frac1{\ln\alpha}\left[\ln\ln^\alpha\alpha-\sum_{i=0}^{\alpha-1}\ln(\alpha-i)\right]\tag{1}$$ so $$\begin{align}&\lambda_{\alpha}=\frac{\frac1{\ln^\alpha\alpha}\left[\ln\ln^\alpha\alpha-\sum_{i=0}^{\alpha-1}\ln(\alpha-i)\right]^\alpha-\frac{\ln^\alpha\alpha}{\prod_{i=0}^{\alpha-1}(\alpha-i)}}{\frac1{\ln\alpha}\left[\ln\ln^\alpha\alpha-\sum_{i=0}^{\alpha-1}\ln(\alpha-i)\right]}\\\implies&\lambda_{\alpha}=\frac{\left[\ln\ln^\alpha\alpha-\sum_{i=0}^{\alpha-1}\ln(\alpha-i)\right]^\alpha\prod_{i=0}^{\alpha-1}(\alpha-i)-\ln^{2\alpha}\alpha}{\ln^{\alpha-1}\alpha\left[\ln\ln^\alpha\alpha-\sum_{i=0}^{\alpha-1}\ln(\alpha-i)\right]\prod_{i=0}^{\alpha-1}(\alpha-i)}\tag{2}\end{align}$$ The expression for $|\lambda_{\alpha+1}/\alpha\lambda_{\alpha}|$ is extremely complicated so I will not give it here.
How should I continue? It seems that the limit does exist, but I would like a rigorous proof of it.