Let $X_1,X_2,...,X_n$ be independent normal distributions with a common variance $\sigma^2$. The usual definition of sample variance is $S^2:=\frac{\Sigma_{i=1}^{n} (X_i-\bar{X})^2}{n-1}$.
I want to show that $E[S^2]=\sigma^2$, i.e. the population variance.
My attempt at proof:
$\frac{n-1}{\sigma^2}E[S^2] = E[\frac{(n-1)S^2}{\sigma^2}] = E[\frac{\Sigma_{i=1}^{n}(X_i-\bar{X})^2}{\sigma^2}]=n$,
This is because for each $i$, $\frac{(X_i-\bar{X})}{\sigma}$ has a $N(0,1)$ distribution, so $\frac{(X_i-\bar{X})^2}{\sigma^2}$ has a Chi-squared distribution, each has an expected value of $1$.
But then $E[S^2]=\frac{n}{n-1}\sigma^2\neq 1$.