$$u1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \\ \end{bmatrix}\,, u2 = \begin{bmatrix} -2 \\ 1 \\ -1 \\ 1 \\ \end{bmatrix}\,, u3 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 1 \\ \end{bmatrix}\,, u4 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -2 \\ \end{bmatrix}\,, v = \begin{bmatrix} 4 \\ 5 \\ -3 \\ 3 \\ \end{bmatrix}$$
So if I'm interpretting this correctly I have to write v as v=c1p1 + c2p2 where p1 is span{u1} and p2 is span{u2, u3, u4}. How do I find a value for the span of just one vector if the span of it is that vector with any possible weight? What about for the span of those three vectors? And then I just add up those two spans?