Observe the following theorem for vector spaces.
Let $V$ be a finite-dimensional, nontrivial vector space, and suppose $V=\operatorname{span}(v_1,v_2)$. Then some subset of $\{v_1,v_2\}$ will be a basis for $V$.
I would like to know if there is a corresponding theorem for R-modules (where $R$ is a commutative ring with 1), or if not, at least for free R-modules. Stating such a theorem would be useful for me, but attaching a simple proof to accompany it would be even better.
Edit
Just to give some context, I want to work with the ring $R=\mathbb{Z}[\sqrt{-5}]$. So a corresponding theorem which will work for at least this ring (even if it doesn't work for all rings) should be good enough for me.