$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[10px,#ffd]{\ds{\int_{0}^{\infty}{x\cos^{2}\pars{x} \over \expo{x} - 1}\,\dd x}} =
{1 \over 2}\int_{0}^{\infty}{x \over \expo{x} - 1}\,\dd x +
{1 \over 2}\int_{0}^{\infty}{x\cos\pars{2x} \over \expo{x} - 1}\,\dd x
\\[5mm] &\
\left\{\begin{array}{rcl}
\ds{{1 \over 2}\int_{0}^{\infty}{x \over \expo{x} - 1}\,\dd x} & \ds{=} &
\ds{{1 \over 2}\int_{0}^{\infty}{x\expo{-x} \over 1 - \expo{-x}}\,\dd x =
{1 \over 2}\sum_{n = 0}^{\infty}\int_{0}^{\infty}x\expo{-\pars{n + 1}x}\dd x}
\\ & \ds{=} &
\ds{{1 \over 2}\sum_{n = 0}^{\infty}{1 \over \pars{n + 1}^{\, 2}} =
{1 \over 2}\,{\pi^{2} \over 6} = \bbx{\pi^{2} \over 12}}
\\[1cm]
\ds{{1 \over 2}\int_{0}^{\infty}{x\cos\pars{2x} \over \expo{x} - 1}\,\dd x} & \ds{=} &
\ds{\left.{1 \over 2}\,\totald{}{a}\int_{0}^{\infty}{\sin\pars{ax} \over \expo{x} - 1}\,\dd x\,\right\vert_{\ a\ =\ 2}}
\\[2mm] & \ds{=} &
\ds{{1 \over 2}\,\totald{}{a}\bracks{\pi a\coth\pars{\pi a} - 1 \over 2a}_{\ a\ =\ 2}}
\\[2mm] & \ds{=} &
\ds{{1 \over 2}\,\totald{}{a}\bracks{{1 \over 2a^{2}} - {\pi^{2} \over 2}\,\mrm{csch}^{2}\pars{\pi a}}_{\ a\ =\ 2}}
\\[2mm] & \ds{=} &
\bbx{\ds{{1 \over 16} - {\pi^{2} \over 4}\,\mrm{csch}^{2}\pars{2\pi}}}
\end{array}\right.
\end{align}
Then,
$$
\bbx{\bbox[10px,#ffd]{\ds{\int_{0}^{\infty}{x\cos^{2}\pars{x} \over \expo{x} - 1}\,\dd x}} =
{\pi^{2} \over 12} + {1 \over 16} - {\pi^{2} \over 4}\,\mrm{csch}^{2}\pars{2\pi}} \approx 0.8849
$$
The integral
$\ds{\int_{0}^{\infty}{\sin\pars{ax} \over \expo{x} - 1}\,\dd x =
{\pi a\coth\pars{\pi a} - 1 \over 2a}}$ has already been evaluated
in this link.
mickepanswer. – Mariusz Iwaniuk Apr 10 '18 at 12:41