3

Show that canonical projection $\pi:\mathbb{R}^{n+1}\setminus \{0\}\rightarrow \mathbb{RP}^{n}$ is open.

I tried to prove it, but I have a hard time pulling the aberts. I search the internet but only find the projection using the sphere $\pi:\mathbb{S}^{n}\rightarrow \mathbb{RP}^{n}$.

Mancala
  • 814

1 Answers1

2

$\def\R{\mathbb R}$ $\def\Rnp{\mathbb R^{n+1}}$ Let $U \in \Rnp$ open. We need to show that $\pi^{-1}(\pi(U))$ is open. But $$\pi^{-1}(\pi(U)) = \{r x : r \in \R \setminus \{0\}, x \in U\} = \bigcup_{r\in \R \setminus \{0\}} r U,$$ which is a union of open sets, hence open.

Ivo Terek
  • 80,301
fred goodman
  • 4,443