Let $\mathcal{A}$ be the algebraic closure of $\mathbb{Q}$ in $\mathbb{C}$. Prove that $[\mathcal{A}:\mathbb{Q}] = \infty$.
I can show this using $[\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}] = n$ for all $n \in \mathbb{N}$ and $[\mathcal{A}:\mathbb{Q}] = [\mathcal{A}:\mathbb{Q}(\sqrt[n]{2})][\mathbb{Q}(\sqrt[n]{2}):\mathbb{Q}]$. Does anyone know an alternative proof? It's just curiosity.