In trying to understand the exterior or wedge product following Prof. Shifrin's series (Chapter 8 - here, here and here), and connecting it with the more general tensor algebra operations, I would like to make sure that the following is correct:
The dual vector space $V^*=(\mathbb R^n)^*$ is a vector space of linear maps $\mathbb R^n \to \mathbb R$ that can be represented by a $1\times n$ matrix (i.e. row vector). It is isomorphic to $\mathbb R^n,$ and forms a vector space, which basis can be expressed as $\mathrm e^1,\mathrm e^2,\dots,\mathrm e^n,$ or as $\mathrm dx_1, \mathrm dx_2, \dots ,\mathrm dx_n,$ such that $\mathrm dx_i(\vec v)=\vec {\mathrm e}_i\cdot \vec v.$
This dual vector space constitutes the specific case of the vector space of alternating multilinear maps, denoted $\Lambda^k(\mathbb R^n)^*$ when $k=1.$ For example, in 3-dimensional Euclidean space, i.e. $n=3,$ a possible form would be $7\mathrm dx_2=7\mathrm dy=7\mathrm e^2,$ and if this is fed a vector $\vec v=\begin{bmatrix}-7&8&2\end{bmatrix}^\top,$ the result will be simply the dot product $\small\begin{bmatrix}0&7&0\end{bmatrix}\begin{bmatrix}-7\\8\\2\end{bmatrix}=56.$
As a vector space, these forms can be added (and scalar multiplied), so that $4\mathrm dx +7 \mathrm dy=\begin{bmatrix}4&7&0\end{bmatrix},$ an expression naturally belonging to the same vector space $\Lambda^1(\mathbb R^3)^*,$ and also accepting vectors in $\mathbb R^3$ to produce a real number through the dot product operation.
The wedge product of two such forms in $\Lambda^1(\mathbb R^3)^*$ will result in an element in $\Lambda^2(\mathbb R^3)^*.$ For example, taking the last element of $\Lambda^1(\mathbb R^3)^*$ in the preceding example, i.e. $\psi =4\mathrm dx_1 +7 \mathrm dx_2,$ and wedging it with $\varphi =2\mathrm dx_1 +5 \mathrm dx_3,$ also in the same vector space $\Lambda^1(\mathbb R^3)^*,$ we obtain
$$\psi\wedge\varphi=4\mathrm dx_1 +7 \mathrm dx_2 \wedge 2\mathrm dx_1 +5 \mathrm dx_3=-14\;\mathrm dx_{12}+20\;\mathrm dx_{13}+35\; \mathbb dx_{23}\tag 1$$
Critically, this is the same as picturing the two forms in $\Lambda^1(\mathbb R^3)^*,$ i.e. $4\mathrm dx_1 +7 \mathrm dx_2=\color{red}{\begin{bmatrix}4&7&0\end{bmatrix}}^\top$ and $2\mathrm dx_1 +5 \mathrm dx_3=\color{blue}{\begin{bmatrix}2&0&5\end{bmatrix}}^\top$ as
$$\begin{bmatrix} \color{red}4&\color{red}7&\color{red}0\\ \color{blue}2& \color{blue} 0 & \color{blue}5 \end{bmatrix}$$
and realizing that $\mathrm dx_{12}$ is simply the determinant of the first two columns (minor of the submatrix):
$$\det{\begin{bmatrix} \color{red}4&\color{red}7\\ \color{blue}2& \color{blue} 0 \end{bmatrix}}=-14$$
and that $\mathrm dx_{13}$
$$\det{\begin{bmatrix} \color{red}4&\color{red}0\\ \color{blue}2& \color{blue} 5 \end{bmatrix}}=20$$
with $\mathrm dx_{23}$
$$\det{\begin{bmatrix} \color{red}7&\color{red}0\\ \color{blue}0& \color{blue} 5 \end{bmatrix}}=35$$
We could express this as
$$\psi\wedge\varphi=\sum \text {minors}_{ij}\; \mathrm d_{ij}$$
The wedge product can be carried out between vector spaces $\Lambda^l(\mathbb R^n)^*\wedge \Lambda^k(\mathbb R^n)^*\in \Lambda^{l+k}(\mathbb R^n)^*.$
This all comes together when two vectors in $\mathbb R^3$ are fed into the expression in Eq (1), for example $\small\vec p =\begin{bmatrix}-1&-\pi&-\sqrt 2\end{bmatrix}^\top$ and $\small\vec q =\begin{bmatrix}10^1&10^2&10^3\end{bmatrix}^\top:$
$$\begin{align}\left(\psi \wedge \varphi\right)[p,q] &= \require{cancel}\cancel {\left(-14\;\mathrm dx_{12}+20\;\mathrm d_{13}+35\; \mathbb d_{23} \right)\,[p,q]}\\&\cancel{=(-14)(-1)(10^2)+(20)(-1)(10^3)+(35)(-\pi)(10^3)} \end{align}$$
Attempt at mending after Professor Shifrin's correction:
$$\begin{align}\left(\psi \wedge \varphi\right)(p,q) &= -14\,\mathrm dx_{12}(p,q) + 20 \,\mathrm dx_{13}(p,q) + 35\, \mathrm dx_{23}(p,q)\\[2ex] &=-14 \,\begin{vmatrix}-1&10 \\-\pi & 10^2\end{vmatrix}+ 20\, \begin{vmatrix}-1 & 10 \\-\sqrt 2 & 10^3\end{vmatrix} + 35\, \begin{vmatrix}-\pi & 10^2 \\-\sqrt 2 & 10^3\end{vmatrix} \end{align}$$
As for the equivalence to tensor algebra pointed out in the answer
$$\begin{align} \mathrm dx_{12}(p,q)&=\mathrm dx_1 \wedge \mathrm dx_2 (p,q)\\[2ex] &= \left(\mathrm dx_1 \otimes \mathrm dx_2 - \mathrm dx_2\otimes \mathrm dx_1\right)(p,q)\\[2ex] &= (\mathrm dx_1 \otimes \mathrm dx_2 )(p,q)-(\mathrm dx_2\otimes \mathrm dx_1)(p,q)\\[2ex] &=\mathrm dx_1(p)\,\mathrm dx_2(q) - \mathrm dx_2(p) \,\mathrm dx_1(q)\\[2ex] &= (-1)(10^2) - (-\pi)(10)\\[2ex] &=\begin{vmatrix}-1&10 \\-\pi & 10^2\end{vmatrix}. \end{align}$$