5

How to prove that $\displaystyle\int_0^{+\infty}\left|\dfrac{\sin x}{x}\right| \, dx = +\infty$ ? Could any one give some hint ? Thanks.

xyguo
  • 443

2 Answers2

5

$$\int_{k\pi}^{(k+1)\pi}\left|\frac{\sin x}{x}\right|dx\geq\frac{1}{(k+1)\pi}\int_{k\pi}^{(k+1)\pi}|\sin x|dx.$$

You can bound the integral below by a constant multiple of the harmonic series.

Jonas Meyer
  • 55,715
2

Hint: $\sum \frac {1}{n} =$ is unbounded. Consider the intervals where $|\sin x| > \frac {1}{2}$.

Calvin Lin
  • 77,541