For $p=2$, we have
$$\frac {n!}{p(p+1) ... (p+n-1)} = \frac{1}{n+1}$$
and hence the series diverges like the harmonic series.
For $0<p<2$, we can do a comparison with $p=2$ to conclude that the series also diverges.
Now, suppose $p>2$ and write $p=2+\epsilon$.
We can write the term as
\begin{align}a_n=\frac {1}{
\frac{p}2\,
\frac{p+1}3\,
\dots
\frac{p+n-2}n\,
(p+n-1)
}
&=
\frac {1}{
\left(1+\frac{\epsilon}2\right)
\left(1+\frac{\epsilon}3\right)
\dots
\left(1+\frac{\epsilon}n\right)\,
(p+n-1)
}
\\&=
\frac{\frac{1}{n+1}}{
\left(1+\frac{\epsilon}2\right)
\left(1+\frac{\epsilon}3\right)
\dots
\left(1+\frac{\epsilon}n\right)\,
\left(1+\frac{\epsilon}{n+1}\right)\,
}.
\end{align}
Let $b_n = n\left(\frac{a_n}{a_{n+1}}-1\right)$.
We can check that
\begin{align}
b_n
&=
\frac{n}{n+1}\, (1+\epsilon).
\end{align}
Then $b_n\to1+\epsilon >1$ as $n\to\infty$ and hence $\sum a_n$ converges by Raabe's test.