Find the number of permutations of $[12]$ whose order is $a)3 \\b)4 \\c)12$
As @астонвіллаолофмэллбэрг stated in the comments, it's not an easy process and I missed counting some possible permutations already..
My solution:
a)I started choosing $3$ elements out of $12$ that are forming the order of the permutation
And WLOG, I chose $1,2,3$
So the permutations I get are:
$\begin{pmatrix} 1 & 2 & 3 & 4 & \cdots & 11 & 12 \\ \color{red}{2} & \color{red}{3} & \color{red}{1} & 4 &\cdots & 11 & 12 \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 & 3 & 4 &\cdots & 11 & 12 \\ \color{red}{3} & \color{red}{1} & \color{red}{2} & 4 &\cdots & 11 & 12 \end{pmatrix}$
So, the number of permutations of $[12]$ of order $3$ is $\binom{12}3\cdot 2 $
b)Similarly, I chose $4$ elements - namely $1,2,3,4$ - out of $12$ that are forming the order of the permutation
So the permutations I get are:
$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & 11 & 12 \\ \color{red}{2} & \color{red}{3} & \color{red}{4} &\color{red}{1} & 5 & \cdots & 11 & 12 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & 11 & 12 \\ \color{red}{2} & \color{red}{4} & \color{red}{1} &\color{red}{3} & 5 & \cdots & 11 & 12 \end{pmatrix}$, , $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & 11 & 12 \\ \color{red}{3} & \color{red}{1} & \color{red}{4} &\color{red}{2} & 5 & \cdots & 11 & 12 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & 11 & 12 \\ \color{red}{3} & \color{red}{4} & \color{red}{2} &\color{red}{1} & 5 & \cdots & 11 & 12 \end{pmatrix}$,
$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & 11 & 12 \\ \color{red}{4} & \color{red}{1} & \color{red}{2} &\color{red}{3} & 5 & \cdots & 11 & 12 \end{pmatrix}$,$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & 11 & 12 \\ \color{red}{4} & \color{red}{3} & \color{red}{1} &\color{red}{2} & 5 & \cdots & 11 & 12 \end{pmatrix}$,
So, the number of permutations of $[12]$ of order $4$ is $\binom{12}4\cdot 6 $
c) For this part I think the problem as this:
Since we want the permutation to be of order $12$, starting from $1$ :
$1$ can be matched to one of the $11$ numbers out of $12$,excluding itself, say it matched to the $2$, then there remains $10$ numbers to be matched with $2$ , exluding $1$ and itself, and there remains $9$ numbers to be matched with $3$ , exluding $1$, $2$ and itself, so it goes in this fashion..
So, the number of permutations of $[12]$ of order $12$ is $11\cdot 10 \cdots 2\cdot 1=11!$
Are my solutions valid for $a,b$ and $c$?